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Phenotypic and structural modalities are complementary and their combination leads to better model 
performance.
Using deep learning models improves the performance and reduces the computation time by 4 orders of 
magnitude.
The deep learning multimodal model surpasses traditional approaches based on human-defined features.

CONCLUSIONS

ABSTRACT
Advancements in the field of Artificial Intelligence opened paths to leveraging the potential of 
computational screening methods on an unprecedented scale. Vast datasets of High 
Content Screening (HCS) images can be used to train AI models and subsequently apply 
them to effectively support the drug discovery process; with the ambition of boosting speed 
and probability of success. Understanding how to make the best use of such datasets 
becomes more crucial the bigger our screening grows. 

In our experiments, we demonstrate the effectiveness of predicting the Mode of Action (MoA) 
and biological activity of small molecules using Cell Painting, an HCS Assay which visualises 
cell phenotype in a target-agnostic manner. We further explore the approach of combining 
phenotypic features extracted from the images with encodings of chemical structures, which 
has been shown to improve the accuracy of MoA prediction. Our proposed setup compares 
how human-defined features score against AI representations, with the latter being also 
significantly more cost- and time-efficient to extract. 

We benchmarked our method using a dataset consisting of thousands of compounds. For 
each input modality, we trained a neural network for compound activity prediction. We 
present a quantitative summary of the activity prediction performance and a qualitative 
comparison of how well different data modalities can predict different MoAs and activity 
against the targets of interest. We display the benefit of combining the phenotypic and 
chemical features, allowing to fully utilise the predictive power of Cell Painting datasets. 

DATASET
We used CellPainting images of U2OS cells generated at Merck. The cells were treated 
with a library containing a wide range of small molecules from different sources, including 
proprietary compounds and a bioactive reference set. The latter is composed of 2505 
molecules with DrugBank and Therapeutic Target Database (TTD) annotations, 153 
SGC/KCGS probes and 147 Merck Legacy compounds from internal Merck projects. 
Compounds were selected based on their highest clinical stage and selectivity (annotated 
targets per compound) and then prioritised in order to balance between the best possible 
target coverage and number of compounds per target (mainly below 10).

From the entire dataset, we sampled 3 hold-out test sets grouped by chemical scaffold 
similarity to avoid a structural information leak. For each hold-out, we generated 5 
randomised train/validation splits repeated until achieving sufficient label coverage of at least 
5 positive and 5 negative training examples (i.e. unique compounds, not replicates) per task. 
We scored 147 Modes of Action (MoAs) and 556 Bioactivity Properties that passed the 
filtering. On average, we had 15 positive and 102 negative examples per task in the whole 
dataset. In each fold, the train set consisted of 8k-9k compounds, and the test set 1k-1.5k. 

METHODS
We applied a method presented in Fig. 1 to analyse the performance of MoA and biological 
activity prediction models for small molecules using images and chemical structures. We 
start by generating a vector representation of both images and chemical structures, which is 
then concatenated to create a multimodal representation of a molecule. Then, this 
representation is passed through a Multi-Layer Perceptron (MLP) to obtain a prediction for 
each property. Each label describes either MoA or property and is assigned an active (1) or 
inactive (-1) value. Additionally, we compare a uni-modal approach where only one 
representation is used, either phenotypic or chemical.

Artificial Intelligence representations Phenotypic representation is generated using a Deep 
Convolutional Neural Network (GapNet [1]) pre-trained using a compound-matching task 
(DL). To generate representation of chemical structures, we use a proprietary model: Relative 
Molecule Attention Transformer (RMAT [2]). 

Human-defined representations Morphological features of cells are obtained using 
CellProfiler (CP [3]) and structures are described using Extended-Connectivity Fingerprints 
(ECFP [4]).

RESULTS AND DISCUSSION
The combination of CP and RMAT provides the best results as depicted in Fig. 2 which presents a summary of 
results of all methods with respect to prediction tasks. Although, it is noteworthy that the difference between top 
performing methods is not statistically significant. On the other hand, the addition of DL image features enables 
more tasks to achieve the highest ROC AUC brackets. We observe performance gain both with RMAT and ECFP 
representations, compared to using only phenotypes as presented in Fig. 3 showing distributions of tasks for all 
modalities. 

We observed that both, using a multimodal approach (Fig. 4A)  as well as applying AI features (Fig. 4B), lead to 
the improvement of ROC AUC prediction score for most of the tested kinases from all families.  

The improvement by multimodality is especially profound for CMGC kinases, where the activity was predicted 
with higher confidence for 11 out of 14 kinases and improvement was seen for all DYRK and GSK3Beta 
enzymes. Interestingly, for enzymes such as CDK2A, CDKE, CLK4 and DYRK1A, ROC AUC above 0.7 was 
achieved only with multimodal tasks. 

By contrast, multimodal approach was not improving the prediction of the CAMK family but applying AI 
approach increased ROC AUC for 5 out of 6 kinases, whereas for CMGC improvement of activity prediction by 
AI methods was seen only for 6 out of 17 enzymes.   
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CONCLUSIONS
● Multimodal representation consistently improves prediction scores across all tested 

setups as showcased by our experiments.
● Cell phenotypes described with either CellProfiler or Deep Learning features perform 

comparably when supported by chemical representations. Therefore, other advantages 
shall be considered, like the straightforward interpretability of CP features, or the easiness 
of extraction and shorter computation time of DL representations.

● AI-driven methods improve the quality of predictions on a biologically diverse 
collection of tasks spanning over the entirety of the kinome. 

Figure 1. Method overview: Images and structures are processed using either AI model or 
human-defined features and passed through MLP to obtain predictions.

Figure 2. ROC AUC scores - numerical comparison between modalities. Asterisks denote modalities that 
utilise AI-based representations, as opposed to human-defined features and bold values represent the best result.
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ECFP 0.58 ± 0.12 36 19 9 0.58 ± 0.16 184 94 45

RMAT* 0.63 ± 0.11 52 23 12 0.63 ± 0.16 244 162 76

DL* 0.58 ± 0.09 35 14 4 0.64 ± 0.14 248 134 47

CP 0.60 ± 0.10 40 14 3 0.66 ± 0.14 257 148 55

DL+ECFP* 0.61 ± 0.12 47 27 13 0.66 ± 0.13 249 140 65

CP+ECFP 0.63 ± 0.11 53 33 12 0.68 ± 0.14 279 169 72

DL+RMAT* 0.64 ± 0.11 65 29 10 0.66 ± 0.16 262 181 92

CP+RMAT* 0.65 ± 0.13 62 36 11 0.68 ± 0.14 287 176 86

Figure 4. Kinome trees. Node color represents improvement of Avg ROC AUC while using A) multimodal 
approach or B) AI methods for particular kinases. Node size represents the values of this improvement. Utilisation 
of multimodality and AI-based representations leads to performance improvements in each family of the kinome. 
Tested kinases within the CAMK group appear to be exceptionally phenotype-driven with only one target being 
improved by chemical features.

A. Phenotype-only vs. Multimodal B. Human-defined vs. AI

Figure 3. Comparison of distributions of scores obtained with each modality. On average, multimodality 
improves scores when compared to using only phenotypic representations.


